PlotSquared/src/main/java/com/intellectualcrafters/plot/object/PlotAnalysis.java

565 lines
23 KiB
Java
Raw Normal View History

package com.intellectualcrafters.plot.object;
2015-07-30 16:25:16 +02:00
import java.io.IOException;
import java.lang.reflect.Array;
import java.util.ArrayDeque;
import java.util.ArrayList;
import java.util.Arrays;
2015-07-30 16:25:16 +02:00
import java.util.Iterator;
import java.util.List;
import java.util.concurrent.atomic.AtomicInteger;
import com.intellectualcrafters.configuration.file.YamlConfiguration;
2015-07-17 18:50:32 +02:00
import com.intellectualcrafters.plot.PS;
2015-07-17 12:48:13 +02:00
import com.intellectualcrafters.plot.flag.Flag;
import com.intellectualcrafters.plot.flag.FlagManager;
import com.intellectualcrafters.plot.util.MainUtil;
import com.intellectualcrafters.plot.util.MathMan;
2015-07-17 12:48:13 +02:00
import com.intellectualcrafters.plot.util.TaskManager;
2015-07-28 08:06:19 +02:00
import com.plotsquared.bukkit.util.BukkitHybridUtils;
2015-07-17 12:48:13 +02:00
public class PlotAnalysis {
2015-07-17 18:50:32 +02:00
public int changes;
public int faces;
public int data;
public int air;
public int variety;
2015-07-17 12:48:13 +02:00
2015-07-17 18:50:32 +02:00
public int changes_sd;
public int faces_sd;
public int data_sd;
public int air_sd;
public int variety_sd;
private int complexity;
2015-07-17 12:48:13 +02:00
2015-07-17 18:50:32 +02:00
public static PlotAnalysis MODIFIERS = new PlotAnalysis();
2015-07-17 12:48:13 +02:00
public static PlotAnalysis getAnalysis(Plot plot) {
Flag flag = FlagManager.getPlotFlag(plot, "analysis");
if (flag != null) {
PlotAnalysis analysis = new PlotAnalysis();
2015-07-17 18:50:32 +02:00
List<Integer> values = (List<Integer>) flag.getValue();
2015-08-14 00:52:31 +02:00
analysis.changes = values.get(0); // 2126
analysis.faces = values.get(1); // 90
analysis.data = values.get(2); // 0
analysis.air = values.get(3); // 19100
analysis.variety = values.get(4); // 266
2015-07-17 18:50:32 +02:00
2015-08-14 00:52:31 +02:00
analysis.changes_sd = values.get(5); // 2104
analysis.faces_sd = values.get(6); // 89
analysis.data_sd = values.get(7); // 0
analysis.air_sd = values.get(8); // 18909
analysis.variety_sd = values.get(9); // 263
2015-07-17 18:50:32 +02:00
analysis.complexity = analysis.getComplexity();
2015-07-17 12:48:13 +02:00
return analysis;
}
return null;
}
public List<Integer> asList() {
return Arrays.asList(changes, faces, data, air, variety, changes_sd, faces_sd, data_sd, air_sd, variety_sd);
}
public int getComplexity() {
if (complexity != 0) {
return complexity;
2015-07-17 12:48:13 +02:00
}
complexity = (this.changes) * MODIFIERS.changes
+ (this.faces) * MODIFIERS.faces
+ (this.data) * MODIFIERS.data
+ (this.air) * MODIFIERS.air
+ (this.variety) * MODIFIERS.variety
+ (this.changes_sd) * MODIFIERS.changes_sd
+ (this.faces_sd) * MODIFIERS.faces_sd
+ (this.data_sd) * MODIFIERS.data_sd
+ (this.air_sd) * MODIFIERS.air_sd
+ (this.variety_sd) * MODIFIERS.variety_sd;
return complexity;
}
public static void analyzePlot(Plot plot, RunnableVal<PlotAnalysis> whenDone) {
2015-07-17 12:48:13 +02:00
BukkitHybridUtils.manager.analyzePlot(plot, whenDone);
}
2015-07-17 18:50:32 +02:00
public static boolean running = false;
2015-07-17 12:48:13 +02:00
/**
2015-07-17 18:50:32 +02:00
* This will set the optimal modifiers for the plot analysis based on the current plot ratings<br>
* - Will be used to calibrate the threshold for plot clearing
2015-07-17 12:48:13 +02:00
* @param whenDone
*/
public static void calcOptimalModifiers(final Runnable whenDone, final double threshold) {
2015-07-17 18:50:32 +02:00
if (running) {
2015-07-30 16:25:16 +02:00
PS.debug("Calibration task already in progress!");
2015-07-17 18:50:32 +02:00
return;
}
if (threshold <= 0 || threshold >= 1) {
2015-07-30 16:25:16 +02:00
PS.debug("Invalid threshold provided! (Cannot be 0 or 100 as then there's no point calibrating)");
return;
}
2015-07-17 18:50:32 +02:00
running = true;
2015-07-30 16:25:16 +02:00
PS.debug(" - Fetching all plots");
2015-07-17 18:50:32 +02:00
final ArrayList<Plot> plots = new ArrayList<>(PS.get().getPlots());
TaskManager.runTaskAsync(new Runnable() {
@Override
public void run() {
Iterator<Plot> iter = plots.iterator();
2015-07-30 16:25:16 +02:00
PS.debug(" - $1Reducing " + plots.size() + " plots to those with sufficient data");
2015-07-17 18:50:32 +02:00
while (iter.hasNext()) {
Plot plot = iter.next();
2015-07-21 20:31:12 +02:00
if (plot.getSettings().ratings == null || plot.getSettings().ratings.size() == 0) {
2015-07-17 18:50:32 +02:00
iter.remove();
}
else {
MainUtil.runners.put(plot, 1);
}
2015-07-17 18:50:32 +02:00
}
2015-07-30 16:25:16 +02:00
PS.debug(" - | Reduced to " + plots.size() + " plots");
2015-07-17 18:50:32 +02:00
if (plots.size() < 3) {
2015-07-30 16:25:16 +02:00
PS.debug("Calibration cancelled due to insufficient comparison data, please try again later");
2015-07-17 18:50:32 +02:00
running = false;
for (Plot plot : plots) {
MainUtil.runners.remove(plot);
}
2015-07-17 18:50:32 +02:00
return;
}
2015-07-30 16:25:16 +02:00
PS.debug(" - $1Analyzing plot contents (this may take a while)");
2015-07-17 18:50:32 +02:00
final int[] changes = new int[plots.size()];
final int[] faces = new int[plots.size()];
final int[] data = new int[plots.size()];
final int[] air = new int[plots.size()];
final int[] variety = new int[plots.size()];
final int[] changes_sd = new int[plots.size()];
final int[] faces_sd = new int[plots.size()];
final int[] data_sd = new int[plots.size()];
final int[] air_sd = new int[plots.size()];
final int[] variety_sd = new int[plots.size()];
final int[] ratings = new int[plots.size()];
2015-07-26 20:38:08 +02:00
final AtomicInteger mi = new AtomicInteger(0);
2015-07-17 18:50:32 +02:00
Thread ratingAnalysis = new Thread(new Runnable() {
@Override
public void run() {
2015-07-26 20:38:08 +02:00
for (;mi.intValue() < plots.size(); mi.incrementAndGet()) {
2015-07-17 18:50:32 +02:00
int i = mi.intValue();
Plot plot = plots.get(i);
2015-07-21 20:31:12 +02:00
ratings[i] = (int) ((plot.getAverageRating() + plot.getSettings().ratings.size()) * 100);
2015-07-30 16:25:16 +02:00
PS.debug(" | " + plot + " (rating) " + (ratings[i]));
2015-07-17 18:50:32 +02:00
}
}
});
ratingAnalysis.start();
final ArrayDeque<Plot> plotsQueue = new ArrayDeque<>(plots);
while (true) {
final Plot queuePlot = plotsQueue.poll();
if (queuePlot == null) {
break;
}
2015-07-30 16:25:16 +02:00
PS.debug(" | " + queuePlot);
final Object lock = new Object();
TaskManager.runTask(new Runnable() {
@Override
2015-07-17 18:50:32 +02:00
public void run() {
analyzePlot(queuePlot, new RunnableVal<PlotAnalysis>() {
public void run() {
2015-07-21 05:41:04 +02:00
try {
wait(10000);
} catch (InterruptedException e) {
e.printStackTrace();
}
synchronized (lock) {
2015-07-21 05:41:04 +02:00
MainUtil.runners.remove(queuePlot);
lock.notify();
}
}
});
2015-07-17 18:50:32 +02:00
}
});
try {
synchronized (lock) {
lock.wait();
}
2015-07-17 18:50:32 +02:00
} catch (InterruptedException e) {
e.printStackTrace();
}
}
2015-07-30 16:25:16 +02:00
PS.debug(" - $1Waiting on plot rating thread: " + ((mi.intValue() * 100) / plots.size()) + "%");
2015-07-17 18:50:32 +02:00
try {
ratingAnalysis.join();
} catch (InterruptedException e) {
e.printStackTrace();
}
2015-07-30 16:25:16 +02:00
PS.debug(" - $1Processing and grouping single plot analysis for bulk processing");
2015-07-17 18:50:32 +02:00
for (int i = 0; i < plots.size(); i++) {
Plot plot = plots.get(i);
2015-07-30 16:25:16 +02:00
PS.debug(" | " + plot);
2015-07-17 18:50:32 +02:00
PlotAnalysis analysis = plot.getComplexity();
changes[i] = analysis.changes;
faces[i] = analysis.faces;
data[i] = analysis.data;
air[i] = analysis.air;
variety[i] = analysis.variety;
changes_sd[i] = analysis.changes_sd;
faces_sd[i] = analysis.faces_sd;
data_sd[i] = analysis.data_sd;
air_sd[i] = analysis.air_sd;
variety_sd[i] = analysis.variety_sd;
}
2015-07-30 16:25:16 +02:00
PS.debug(" - $1Calculating rankings");
2015-07-17 18:50:32 +02:00
int[] rank_ratings = rank(ratings);
int n = rank_ratings.length;
int optimal_index = (int) Math.round((1 - threshold) * (n - 1));
2015-07-30 16:25:16 +02:00
PS.debug(" - $1Calculating rank correlation: ");
PS.debug(" - The analyzed plots which were processed and put into bulk data will be compared and correlated to the plot ranking");
PS.debug(" - The calculated correlation constant will then be used to calibrate the threshold for auto plot clearing");
2015-07-17 18:50:32 +02:00
int[] rank_changes = rank(changes);
int[] sd_changes = getSD(rank_changes, rank_ratings);
2015-07-17 18:50:32 +02:00
int[] variance_changes = square(sd_changes);
int sum_changes = sum(variance_changes);
double factor_changes = getCC(n, sum_changes);
PlotAnalysis.MODIFIERS.changes = factor_changes == 1 ? 0 : (int) (factor_changes * 1000 / MathMan.getMean(changes));
2015-07-30 16:25:16 +02:00
PS.debug(" - | changes " + factor_changes);
2015-07-17 18:50:32 +02:00
int[] rank_faces = rank(faces);
int[] sd_faces = getSD(rank_faces, rank_ratings);
2015-07-17 18:50:32 +02:00
int[] variance_faces = square(sd_faces);
int sum_faces = sum(variance_faces);
double factor_faces = getCC(n, sum_faces);
PlotAnalysis.MODIFIERS.faces = factor_faces == 1 ? 0 : (int) (factor_faces * 1000 / MathMan.getMean(faces));
2015-07-30 16:25:16 +02:00
PS.debug(" - | faces " + factor_faces);
2015-07-17 18:50:32 +02:00
int[] rank_data = rank(data);
int[] sd_data = getSD(rank_data, rank_ratings);
2015-07-17 18:50:32 +02:00
int[] variance_data = square(sd_data);
int sum_data = sum(variance_data);
double factor_data = getCC(n, sum_data);
PlotAnalysis.MODIFIERS.data = factor_data == 1 ? 0 : (int) (factor_data * 1000 / MathMan.getMean(data));
2015-07-30 16:25:16 +02:00
PS.debug(" - | data " + factor_data);
2015-07-17 18:50:32 +02:00
int[] rank_air = rank(air);
int[] sd_air = getSD(rank_air, rank_ratings);
2015-07-17 18:50:32 +02:00
int[] variance_air = square(sd_air);
int sum_air = sum(variance_air);
double factor_air = getCC(n, sum_air);
PlotAnalysis.MODIFIERS.air = factor_air == 1 ? 0 : (int) (factor_air * 1000 / MathMan.getMean(air));
2015-07-30 16:25:16 +02:00
PS.debug(" - | air " + factor_air);
2015-07-17 18:50:32 +02:00
int[] rank_variety = rank(variety);
int[] sd_variety = getSD(rank_variety, rank_ratings);
2015-07-17 18:50:32 +02:00
int[] variance_variety = square(sd_variety);
int sum_variety = sum(variance_variety);
double factor_variety = getCC(n, sum_variety);
PlotAnalysis.MODIFIERS.variety = factor_variety == 1 ? 0 : (int) (factor_variety * 1000 / MathMan.getMean(variety));
2015-07-30 16:25:16 +02:00
PS.debug(" - | variety " + factor_variety);
2015-07-17 18:50:32 +02:00
int[] rank_changes_sd = rank(changes_sd);
int[] sd_changes_sd = getSD(rank_changes_sd, rank_ratings);
2015-07-17 18:50:32 +02:00
int[] variance_changes_sd = square(sd_changes_sd);
int sum_changes_sd = sum(variance_changes_sd);
double factor_changes_sd = getCC(n, sum_changes_sd);
PlotAnalysis.MODIFIERS.changes_sd = factor_changes_sd == 1 ? 0 : (int) (factor_changes_sd * 1000 / MathMan.getMean(changes_sd));
2015-07-30 16:25:16 +02:00
PS.debug(" - | changes_sd " + factor_changes_sd);
2015-07-17 18:50:32 +02:00
int[] rank_faces_sd = rank(faces_sd);
int[] sd_faces_sd = getSD(rank_faces_sd, rank_ratings);
2015-07-17 18:50:32 +02:00
int[] variance_faces_sd = square(sd_faces_sd);
int sum_faces_sd = sum(variance_faces_sd);
double factor_faces_sd = getCC(n, sum_faces_sd);
PlotAnalysis.MODIFIERS.faces_sd = factor_faces_sd == 1 ? 0 : (int) (factor_faces_sd * 1000 / MathMan.getMean(faces_sd));
2015-07-30 16:25:16 +02:00
PS.debug(" - | faces_sd " + factor_faces_sd);
2015-07-17 18:50:32 +02:00
int[] rank_data_sd = rank(data_sd);
int[] sd_data_sd = getSD(rank_data_sd, rank_ratings);
2015-07-17 18:50:32 +02:00
int[] variance_data_sd = square(sd_data_sd);
int sum_data_sd = sum(variance_data_sd);
double factor_data_sd = getCC(n, sum_data_sd);
PlotAnalysis.MODIFIERS.data_sd = factor_data_sd == 1 ? 0 : (int) (factor_data_sd * 1000 / MathMan.getMean(data_sd));
2015-07-30 16:25:16 +02:00
PS.debug(" - | data_sd " + factor_data_sd);
2015-07-17 18:50:32 +02:00
int[] rank_air_sd = rank(air_sd);
int[] sd_air_sd = getSD(rank_air_sd, rank_ratings);
2015-07-17 18:50:32 +02:00
int[] variance_air_sd = square(sd_air_sd);
int sum_air_sd = sum(variance_air_sd);
double factor_air_sd = getCC(n, sum_air_sd);
PlotAnalysis.MODIFIERS.air_sd = factor_air_sd == 1 ? 0 : (int) (factor_air_sd * 1000 / MathMan.getMean(air_sd));
2015-07-30 16:25:16 +02:00
PS.debug(" - | air_sd " + factor_air_sd);
2015-07-17 18:50:32 +02:00
int[] rank_variety_sd = rank(variety_sd);
int[] sd_variety_sd = getSD(rank_variety_sd, rank_ratings);
2015-07-17 18:50:32 +02:00
int[] variance_variety_sd = square(sd_variety_sd);
int sum_variety_sd = sum(variance_variety_sd);
double factor_variety_sd = getCC(n, sum_variety_sd);
PlotAnalysis.MODIFIERS.variety_sd = factor_variety_sd == 1 ? 0 : (int) (factor_variety_sd * 1000 / MathMan.getMean(variety_sd));
2015-07-30 16:25:16 +02:00
PS.debug(" - | variety_sd " + factor_variety_sd);
2015-07-17 18:50:32 +02:00
int[] complexity = new int[n];
2015-07-30 16:25:16 +02:00
PS.debug(" $1Calculating threshold");
int max = 0;
int min = 0;
for (int i = 0; i < n; i++) {
Plot plot = plots.get(i);
PlotAnalysis analysis = plot.getComplexity();
complexity[i] = analysis.complexity;
if (analysis.complexity < min) {
min = analysis.complexity;
}
else if (analysis.complexity > max) {
max = analysis.complexity;
}
}
int optimal_complexity = Integer.MAX_VALUE;
if (min > 0 && max < 102400) { // If low size, use my fast ranking algorithm
int[] rank_complexity = rank(complexity, max + 1);
for (int i = 0; i < n; i++) {
if (rank_complexity[i] == optimal_index) {
optimal_complexity = complexity[i];
break;
}
}
logln("Complexity: ");
logln(rank_complexity);
logln("Ratings: ");
logln(rank_ratings);
logln("Correlation: ");
logln(getCC(n, sum(square(getSD(rank_complexity, rank_ratings)))));
if (optimal_complexity == Integer.MAX_VALUE) {
2015-07-30 16:25:16 +02:00
PS.debug("Insufficient data to determine correlation! " + optimal_index + " | " + n);
running = false;
for (Plot plot : plots) {
MainUtil.runners.remove(plot);
}
return;
}
}
else { // Use the fast radix sort algorithm
int[] sorted = complexity.clone();
sort(sorted);
optimal_complexity = sorted[optimal_index];
logln("Complexity: ");
logln(complexity);
logln("Ratings: ");
logln(rank_ratings);
}
// Save calibration
2015-07-30 16:25:16 +02:00
PS.debug(" $1Saving calibration");
YamlConfiguration config = PS.get().config;
config.set("clear.auto.threshold", optimal_complexity);
config.set("clear.auto.calibration.changes", PlotAnalysis.MODIFIERS.changes);
config.set("clear.auto.calibration.faces", PlotAnalysis.MODIFIERS.faces);
config.set("clear.auto.calibration.data", PlotAnalysis.MODIFIERS.data);
config.set("clear.auto.calibration.air", PlotAnalysis.MODIFIERS.air);
config.set("clear.auto.calibration.variety", PlotAnalysis.MODIFIERS.variety);
config.set("clear.auto.calibration.changes_sd", PlotAnalysis.MODIFIERS.changes_sd);
config.set("clear.auto.calibration.faces_sd", PlotAnalysis.MODIFIERS.faces_sd);
config.set("clear.auto.calibration.data_sd", PlotAnalysis.MODIFIERS.data_sd);
config.set("clear.auto.calibration.air_sd", PlotAnalysis.MODIFIERS.air_sd);
config.set("clear.auto.calibration.variety_sd", PlotAnalysis.MODIFIERS.variety_sd);
try {
PS.get().config.save(PS.get().configFile);
} catch (IOException e) {
e.printStackTrace();
}
2015-07-17 18:50:32 +02:00
2015-07-30 16:25:16 +02:00
PS.debug("$1Done!");
2015-07-17 18:50:32 +02:00
running = false;
for (Plot plot : plots) {
MainUtil.runners.remove(plot);
}
2015-07-17 18:50:32 +02:00
whenDone.run();
}
});
}
public static void logln(Object obj) {
2015-07-31 20:27:32 +02:00
PS.debug(log(obj));
}
public static String log(Object obj) {
String result = "";
if (obj.getClass().isArray()) {
String prefix = "";
for(int i=0; i<Array.getLength(obj); i++){
result += prefix + log(Array.get(obj, i));
prefix = ",";
}
return "( " + result + " )";
}
else if (obj instanceof List<?>) {
String prefix = "";
for (Object element : (List<?>) obj) {
result += prefix + log(element);
prefix = ",";
}
return "[ " + result + " ]";
}
else {
return obj.toString();
}
}
2015-07-17 18:50:32 +02:00
/**
* Get correllation coefficient
* @return
*/
public static double getCC(int n, int sum) {
return 1 - (6 * (double) sum) / (n * (n*n - 1));
}
/**
* Sum of an array
* @param array
* @return
*/
public static int sum(int[] array) {
int sum = 0;
for (int value : array ) {
sum += value;
}
return sum;
}
/**
* A simple array squaring algorithm<br>
* - Used for calculating the variance
* @param array
* @return
*/
public static int[] square(int[] array) {
array = array.clone();
for (int i = 0; i < array.length; i++) {
array[i] *= array[i];
}
return array;
}
/**
* An optimized lossy standard deviation algorithm
* @param ranks
* @return
*/
public static int[] getSD(int[]...ranks) {
if (ranks.length == 0) {
return null;
}
int size = ranks[0].length;
int arrays = ranks.length;
int[] result = new int[size];
for (int j = 0; j < size; j++) {
int sum = 0;
for (int i = 0; i < ranks.length; i++) {
sum += ranks[i][j];
}
int mean = sum / arrays;
int sd = 0;
for (int i = 0; i < ranks.length; i++) {
int value = ranks[i][j];
sd += value < mean ? mean - value : value - mean;
}
result[j] = sd;
}
return result;
}
/**
* An optimized algorithm for ranking a very specific set of inputs<br>
* - Input is an array of int with a max size of 102400<br>
* - A reduced sample space allows for sorting (and ranking in this case) in linear time
2015-07-17 18:50:32 +02:00
* @param input
* @return
*/
public static int[] rank(final int[] input) {
return rank(input, 102400);
}
/**
* An optimized algorithm for ranking a very specific set of inputs
* @param input
* @return
*/
public static int[] rank(final int[] input, int size) {
int[] cache = new int[size];
2015-07-17 18:50:32 +02:00
int max = 0;
if (input.length < size) {
2015-07-17 18:50:32 +02:00
for (int value : input) {
if (value > max) {
max = value;
}
cache[value]++;
}
}
else {
max = cache.length - 1;
for (int value : input) {
cache[value]++;
}
}
int last = 0;
for (int i = max; i >= 0; i--) {
if (cache[i] != 0) {
cache[i] += last;
last = cache[i];
if (last == input.length) {
break;
}
}
}
int[] ranks = new int[input.length];
for (int i = 0; i < input.length; i++) {
int index = input[i];
ranks[i] = cache[index];
cache[index]--;
}
return ranks;
}
public static void sort(int[] input) {
final int SIZE = 10;
List<Integer>[] bucket = new ArrayList[SIZE];
for (int i = 0; i < bucket.length; i++) {
bucket[i] = new ArrayList<Integer>();
}
boolean maxLength = false;
int tmp = -1, placement = 1;
while (!maxLength) {
maxLength = true;
for (Integer i : input) {
tmp = i / placement;
bucket[tmp % SIZE].add(i);
if (maxLength && tmp > 0) {
maxLength = false;
}
}
int a = 0;
for (int b = 0; b < SIZE; b++) {
for (Integer i : bucket[b]) {
input[a++] = i;
}
bucket[b].clear();
}
placement *= SIZE;
}
2015-07-17 12:48:13 +02:00
}
}