PlotSquared/src/main/java/com/intellectualcrafters/plot/object/PlotAnalysis.java

461 lines
17 KiB
Java
Raw Normal View History

package com.intellectualcrafters.plot.object;
2015-07-17 18:50:32 +02:00
import java.lang.reflect.Array;
import java.util.ArrayDeque;
import java.util.ArrayList;
import java.util.Iterator;
2015-07-17 12:48:13 +02:00
import java.util.List;
2015-07-17 18:50:32 +02:00
import org.apache.commons.lang.mutable.MutableInt;
import com.intellectualcrafters.plot.PS;
2015-07-17 12:48:13 +02:00
import com.intellectualcrafters.plot.flag.Flag;
import com.intellectualcrafters.plot.flag.FlagManager;
import com.intellectualcrafters.plot.generator.BukkitHybridUtils;
import com.intellectualcrafters.plot.util.TaskManager;
public class PlotAnalysis {
2015-07-17 18:50:32 +02:00
public int changes;
public int faces;
public int data;
public int air;
public int variety;
2015-07-17 12:48:13 +02:00
2015-07-17 18:50:32 +02:00
public int changes_sd;
public int faces_sd;
public int data_sd;
public int air_sd;
public int variety_sd;
public double complexity;
2015-07-17 12:48:13 +02:00
2015-07-17 18:50:32 +02:00
public static PlotAnalysis MODIFIERS = new PlotAnalysis();
2015-07-17 12:48:13 +02:00
public static PlotAnalysis getAnalysis(Plot plot) {
Flag flag = FlagManager.getPlotFlag(plot, "analysis");
if (flag != null) {
PlotAnalysis analysis = new PlotAnalysis();
2015-07-17 18:50:32 +02:00
List<Integer> values = (List<Integer>) flag.getValue();
2015-07-17 12:48:13 +02:00
analysis.changes = values.get(0);
analysis.faces = values.get(1);
2015-07-17 18:50:32 +02:00
analysis.data = values.get(2);
analysis.air = values.get(3);
analysis.variety = values.get(4);
analysis.changes_sd = values.get(5);
analysis.faces_sd = values.get(6);
analysis.data_sd = values.get(7);
analysis.air_sd = values.get(8);
analysis.variety_sd = values.get(9);
analysis.complexity =
+ (analysis.changes) * MODIFIERS.changes
+ (analysis.faces) * MODIFIERS.faces
+ (analysis.data) * MODIFIERS.data
+ (analysis.air) * MODIFIERS.air
+ (analysis.variety) * MODIFIERS.variety
+ (analysis.changes_sd) * MODIFIERS.changes_sd
+ (analysis.faces_sd) * MODIFIERS.faces_sd
+ (analysis.data_sd) * MODIFIERS.data_sd
+ (analysis.air_sd) * MODIFIERS.air_sd
+ (analysis.variety_sd) * MODIFIERS.variety_sd
;
2015-07-17 12:48:13 +02:00
return analysis;
}
return null;
}
public static void analyzePlot(Plot plot, RunnableVal<PlotAnalysis> whenDone) {
PlotAnalysis analysis = getAnalysis(plot);
if (analysis != null) {
whenDone.value = analysis;
2015-07-17 18:50:32 +02:00
if (whenDone != null) whenDone.run();
2015-07-17 12:48:13 +02:00
return;
}
BukkitHybridUtils.manager.analyzePlot(plot, whenDone);
}
2015-07-17 18:50:32 +02:00
public static boolean running = false;
2015-07-17 12:48:13 +02:00
/**
2015-07-17 18:50:32 +02:00
* This will set the optimal modifiers for the plot analysis based on the current plot ratings<br>
* - Will be used to calibrate the threshold for plot clearing
2015-07-17 12:48:13 +02:00
* @param whenDone
*/
2015-07-17 18:50:32 +02:00
public static void calcOptimalModifiers(final Runnable whenDone) {
if (running) {
PS.log("Calibration task already in progress!");
return;
}
running = true;
PS.log(" - Fetching all plots");
final ArrayList<Plot> plots = new ArrayList<>(PS.get().getPlots());
TaskManager.runTaskAsync(new Runnable() {
@Override
public void run() {
Iterator<Plot> iter = plots.iterator();
PS.log(" - $1Reducing " + plots.size() + " plots to those with sufficient data");
while (iter.hasNext()) {
Plot plot = iter.next();
if (plot.settings.ratings == null || plot.settings.ratings.size() == 0) {
iter.remove();
}
}
PS.log(" - | Reduced to " + plots.size() + " plots");
if (plots.size() < 3) {
PS.log("Calibration cancelled due to insufficient comparison data, please try again later");
running = false;
return;
}
PS.log(" - $1Analyzing plot contents (this may take a while)");
final int[] changes = new int[plots.size()];
final int[] faces = new int[plots.size()];
final int[] data = new int[plots.size()];
final int[] air = new int[plots.size()];
final int[] variety = new int[plots.size()];
final int[] changes_sd = new int[plots.size()];
final int[] faces_sd = new int[plots.size()];
final int[] data_sd = new int[plots.size()];
final int[] air_sd = new int[plots.size()];
final int[] variety_sd = new int[plots.size()];
final int[] ratings = new int[plots.size()];
final MutableInt mi = new MutableInt(0);
Thread ratingAnalysis = new Thread(new Runnable() {
@Override
public void run() {
for (;mi.intValue() < plots.size(); mi.increment()) {
int i = mi.intValue();
Plot plot = plots.get(i);
ratings[i] = (int) ((plot.getAverageRating() + plot.settings.ratings.size()) * 100);
PS.log(" | " + plot + " (rating) " + (ratings[i]));
}
}
});
ratingAnalysis.start();
final ArrayDeque<Plot> plotsQueue = new ArrayDeque<>(plots);
Plot queuePlot;
while ((queuePlot = plotsQueue.poll()) != null) {
PS.log(" | " + queuePlot);
final Thread thread = Thread.currentThread();
analyzePlot(queuePlot, new RunnableVal<PlotAnalysis>() {
public void run() {
thread.notify();
}
});
try {
thread.wait();
} catch (InterruptedException e) {
e.printStackTrace();
}
}
PS.log(" - $1Waiting on plot rating thread: " + ((mi.intValue() * 100) / plots.size()) + "%");
try {
ratingAnalysis.join();
} catch (InterruptedException e) {
e.printStackTrace();
}
PS.log(" - $1Processing and grouping single plot analysis for bulk processing");
for (int i = 0; i < plots.size(); i++) {
Plot plot = plots.get(i);
PS.log(" | " + plot);
PlotAnalysis analysis = plot.getComplexity();
changes[i] = analysis.changes;
faces[i] = analysis.faces;
data[i] = analysis.data;
air[i] = analysis.air;
variety[i] = analysis.variety;
changes_sd[i] = analysis.changes_sd;
faces_sd[i] = analysis.faces_sd;
data_sd[i] = analysis.data_sd;
air_sd[i] = analysis.air_sd;
variety_sd[i] = analysis.variety_sd;
}
int[] rank_ratings = rank(ratings);
int n = rank_ratings.length;
PS.log(" - $1Calculating rank correlation: ");
PS.log(" - The analyzed plots which were processed and put into bulk data will be compared and correlated to the ranked plots");
PS.log(" - The calculated correlation constant will be used to calibrate the threshold for auto plot clearing");
int[] rank_changes = rank(changes);
int[] sd_changes = getSD(rank_changes);
int[] variance_changes = square(sd_changes);
int sum_changes = sum(variance_changes);
double factor_changes = getCC(n, sum_changes);
PlotAnalysis.MODIFIERS.changes = (int) (factor_changes * 100);
PS.log(" - | changes " + factor_changes);
int[] rank_faces = rank(faces);
int[] sd_faces = getSD(rank_faces);
int[] variance_faces = square(sd_faces);
int sum_faces = sum(variance_faces);
double factor_faces = getCC(n, sum_faces);
PlotAnalysis.MODIFIERS.faces = (int) (factor_faces * 100);
PS.log(" - | faces " + factor_faces);
int[] rank_data = rank(data);
int[] sd_data = getSD(rank_data);
int[] variance_data = square(sd_data);
int sum_data = sum(variance_data);
double factor_data = getCC(n, sum_data);
PlotAnalysis.MODIFIERS.data = (int) (factor_data * 100);
PS.log(" - | data " + factor_data);
int[] rank_air = rank(air);
int[] sd_air = getSD(rank_air);
int[] variance_air = square(sd_air);
int sum_air = sum(variance_air);
double factor_air = getCC(n, sum_air);
PlotAnalysis.MODIFIERS.air = (int) (factor_air * 100);
PS.log(" - | air " + factor_air);
int[] rank_variety = rank(variety);
int[] sd_variety = getSD(rank_variety);
int[] variance_variety = square(sd_variety);
int sum_variety = sum(variance_variety);
double factor_variety = getCC(n, sum_variety);
PlotAnalysis.MODIFIERS.variety = (int) (factor_variety * 100);
PS.log(" - | variety " + factor_variety);
int[] rank_changes_sd = rank(changes_sd);
int[] sd_changes_sd = getSD(rank_changes_sd);
int[] variance_changes_sd = square(sd_changes_sd);
int sum_changes_sd = sum(variance_changes_sd);
double factor_changes_sd = getCC(n, sum_changes_sd);
PlotAnalysis.MODIFIERS.changes_sd = (int) (factor_changes_sd * 100);
PS.log(" - | changes_sd " + factor_changes_sd);
int[] rank_faces_sd = rank(faces_sd);
int[] sd_faces_sd = getSD(rank_faces_sd);
int[] variance_faces_sd = square(sd_faces_sd);
int sum_faces_sd = sum(variance_faces_sd);
double factor_faces_sd = getCC(n, sum_faces_sd);
PlotAnalysis.MODIFIERS.faces_sd = (int) (factor_faces_sd * 100);
PS.log(" - | faces_sd " + factor_faces_sd);
int[] rank_data_sd = rank(data_sd);
int[] sd_data_sd = getSD(rank_data_sd);
int[] variance_data_sd = square(sd_data_sd);
int sum_data_sd = sum(variance_data_sd);
double factor_data_sd = getCC(n, sum_data_sd);
PlotAnalysis.MODIFIERS.data_sd = (int) (factor_data_sd * 100);
PS.log(" - | data_sd " + factor_data_sd);
int[] rank_air_sd = rank(air_sd);
int[] sd_air_sd = getSD(rank_air_sd);
int[] variance_air_sd = square(sd_air_sd);
int sum_air_sd = sum(variance_air_sd);
double factor_air_sd = getCC(n, sum_air_sd);
PlotAnalysis.MODIFIERS.air_sd = (int) (factor_air_sd * 100);
PS.log(" - | air_sd " + factor_air_sd);
int[] rank_variety_sd = rank(variety_sd);
int[] sd_variety_sd = getSD(rank_variety_sd);
int[] variance_variety_sd = square(sd_variety_sd);
int sum_variety_sd = sum(variance_variety_sd);
double factor_variety_sd = getCC(n, sum_variety_sd);
PlotAnalysis.MODIFIERS.variety_sd = (int) (factor_variety_sd * 100);
PS.log(" - | variety_sd " + factor_variety_sd);
// Save modifiers
PS.log(" $1Done!");
running = false;
whenDone.run();
}
});
// sort plots by popularity
// get the arrays for each modifier
// get the rankings for each modifier
2015-07-17 12:48:13 +02:00
2015-07-17 18:50:32 +02:00
/*
* For each modifier:
* - get the arrays
* - get the rankings
*/
}
public static void logln(Object obj) {
System.out.println(log(obj));
}
public static String log(Object obj) {
String result = "";
if (obj.getClass().isArray()) {
String prefix = "";
for(int i=0; i<Array.getLength(obj); i++){
result += prefix + log(Array.get(obj, i));
prefix = ",";
}
return "( " + result + " )";
}
else if (obj instanceof List<?>) {
String prefix = "";
for (Object element : (List<?>) obj) {
result += prefix + log(element);
prefix = ",";
}
return "[ " + result + " ]";
}
else {
return obj.toString();
}
}
/**
* Get correllation coefficient
* @return
*/
public static double getCC(int n, int sum) {
return 1 - (6 * (double) sum) / (n * (n*n - 1));
}
/**
* Sum of an array
* @param array
* @return
*/
public static int sum(int[] array) {
int sum = 0;
for (int value : array ) {
sum += value;
}
return sum;
}
/**
* A simple array squaring algorithm<br>
* - Used for calculating the variance
* @param array
* @return
*/
public static int[] square(int[] array) {
array = array.clone();
for (int i = 0; i < array.length; i++) {
array[i] *= array[i];
}
return array;
}
/**
* An optimized lossy standard deviation algorithm
* @param ranks
* @return
*/
public static int[] getSD(int[]...ranks) {
if (ranks.length == 0) {
return null;
}
int size = ranks[0].length;
int arrays = ranks.length;
int[] result = new int[size];
for (int j = 0; j < size; j++) {
int sum = 0;
for (int i = 0; i < ranks.length; i++) {
sum += ranks[i][j];
}
int mean = sum / arrays;
int sd = 0;
for (int i = 0; i < ranks.length; i++) {
int value = ranks[i][j];
sd += value < mean ? mean - value : value - mean;
}
result[j] = sd;
}
return result;
}
/**
* An optimized algorithm for ranking a very specific set of inputs<br>
* - Input is an array of int with a max size of 102400
* - This allows for optimizations beyond any standard sorting function
* @param input
* @return
*/
public static int[] rank(final int[] input) {
int[] cache = new int[102400];
int max = 0;
if (input.length < 102400) {
for (int value : input) {
if (value > max) {
max = value;
}
cache[value]++;
}
}
else {
max = cache.length - 1;
for (int value : input) {
cache[value]++;
}
}
int last = 0;
for (int i = max; i >= 0; i--) {
if (cache[i] != 0) {
cache[i] += last;
last = cache[i];
if (last == input.length) {
break;
}
}
}
int[] ranks = new int[input.length];
for (int i = 0; i < input.length; i++) {
int index = input[i];
ranks[i] = cache[index];
cache[index]--;
}
return ranks;
}
public static void sort(int[] input) {
final int SIZE = 10;
List<Integer>[] bucket = new ArrayList[SIZE];
for (int i = 0; i < bucket.length; i++) {
bucket[i] = new ArrayList<Integer>();
}
boolean maxLength = false;
int tmp = -1, placement = 1;
while (!maxLength) {
maxLength = true;
for (Integer i : input) {
tmp = i / placement;
bucket[tmp % SIZE].add(i);
if (maxLength && tmp > 0) {
maxLength = false;
}
}
int a = 0;
for (int b = 0; b < SIZE; b++) {
for (Integer i : bucket[b]) {
input[a++] = i;
}
bucket[b].clear();
}
placement *= SIZE;
}
2015-07-17 12:48:13 +02:00
}
}